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Wave data in the context of
reconnection research: How useful?

* Waves at electron scales: probes for electron
dynamics that particle data cannot resolve yet
as of today

* Waves at ion-electron hybrid scales: enables
ion-electron coupling, agent for dissipation

* Waves at ion-scales and at lower frequency:
not negligible in the energy budget argument,
enables remote effects to emerge



The best event in the magnetotail [Nagai, in prep]




lon distribution function data:
Superposition of in-coming and out-going ions
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Wave observation at an X-line in the real space:
Makes you excited

* Waves at electron scales: dynamic electrons

* Waves at ion-electron hybrid scales: smoking-
gun evidence for dissipation?

# A similar event seen by WIND {rarelioz]



Wave data in the context of
reconnection research: How useful?

* Waves at electron scales: probes for electron
dynamics that particle data cannot resolve yet

as of today

 Waves at ion-electron hybrid scales: enables
ion-electron coupling, agent for dissipation

 Waves at ion-scales and at lower frequency:
not negligible in the energy budget argument,
enables remote effects to emerge



ESW: Electrostatic Solitary Waves

* Seen by Geotail PWI
thanks to the “wave form
capture” capability

[Matsumoto93, Kojima94]

BEN in the f-t diagram
ESW in the waveform data

GT position




Interpretation: Ele two-stream/bump-in-tail

[Umeda02]
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In 2D RX simualtion
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Double layers, too.
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ESW: Scene changes

e ESW by Buneman inst. Seen in 3D simulation of RX
with strong guide field
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[Drake03]  Stimulated by Polar obs
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Scene changes: Buneman inst

 Waves at electron scales: probes for electron
dynamics that particle data cannot resolve yet
as of today

* Waves at ion-electron hybrid scales: enables
ion-electron coupling, agent for dissipation

 Waves at ion-scales and at lower frequency:
not negligible in the energy budget argument,
enables remote effects to emerge
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Buneman instability...

* Unstable condition looks so tough.
* Can it really be excited in the magnetosphere?

# The simulation had large guide field.



ESW: Bump-in-tail vs Buneman

* Totally different phase velocity
—> Easily discernible in observations

# Actually, Cluster does not have the capability (high-cadence

sampling) to catch the faster ESW due to bump-in-tail
electrons.



Cluster obs
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Another twist in the tale?

* Slow ESW (Buneman type) can be seen only in a limited time
interval? [CheQ9]

—

Only during this interval, ESW is Buneman-like

0.2 " ].
i} 204 . 0 1=1.2
l on '\ ion
o1} || / \ electron
i electron
0 ,' ..ﬁ_. \ '/j { - \
' 0. t=0.8 n 0 t=1.6
04 ion | & ion
) | ‘\ electron 4 _" electron
0 "'al — i oo
0 5 10 15 0 5 10 15
v/e, v/es

How can spacecraft obs catch such a short-lived phenomena?!
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 Waves at electron scales: probes for electron
dynamics that particle data cannot resolve yet
as of today

* Waves at ion-electron hybrid scales: enables
ion-electron coupling, agent for dissipation

 Waves at ion-scales and at lower frequency:
not negligible in the energy budget argument,
enables remote effects to emerge
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In this area of interest, traditionally

 Buneman instability
* Lower hybrid wave

are the focus of interest



In this area of interest, traditionally

* Lower hybrid wave

are the focus of interest



Observations in the tail: ISEE1/Geotail
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Figure 3—Two 0.5-s electric field waveforms and the associat-
ed power spectra. The lower hybrid frequency (assuming
100% H +) is indicated.

ISEE1 data
Cattell and Mozer (1987)

* Geotail frequently observes lower
hybrid waves in the plasma sheet
boundary [Okada94, Cattell94]

* And subsequently in the center
[Shinohara98]

- In low {3 region (PSBL), strong LH wave
is observed and the equivalent
Reynolds number is as low as
Ry~ O(100).

- In High 3 region, LH wave power is 1~2
orders below what can supply the
required anomalous resistivity.
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LHDI effects confined to the edges

Excited by the density gradient at the current sheet edges
but is damped in the center where the plasma beta is high

f (Hz)

[Bale02]

Seconds 30 0
2007 Apr 01 05486 0547 0548

[Carter02] for lab experiment
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LHDI only at the edges: useless? ...NO!

t= 7.80000 By t= 16.60000 P t= 30.60000
D=1, Boy=0 AR D=1, Boy=0 TSN D=1, Boy=0

24



LHDI only at the edges: useless? ...NO!

 LHDI at the edges
— local current density reduction at the edges
— non-local current density re-distribution
—> current density enhancement at the center
* Overall consequences
= Formation of thin-embedded current sheet at the center:
Either
intense enough current density
or
anisotropically (Tperp>Tpara) heated electrons at the current sheet center
triggers RX

[Scholer03, Tanaka04, Daughton04, RicciO4, Tanaka05, Shinohara05, Fujimoto05, Tanaka09]
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Yet, the quest for the waves
and the associated dissipation
at the current sheet center continues:

Stability of a current sheet



EM waves of w~ w_Ih
at the current sheet center

e Lab experiment [Ji2004]
* Oblique whistler waves



Global analysis of Harris current sheet

Long wavelength mode with substantial EM component at the

current sheet center
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Growing interest in the properties of
Non-Harris current sheet:
Cluster obs of the current density profile

Four CL spacecraft formation not regarded as

a tetrahedron but as two-pairs of s/c

- Current density at two locations within a current sheet
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The Harris current sheet

 These two invariants of motion are linearly combined together in
the model, and an exponential form is assumed:

Jo expL— — VD)/TO{J a=e,i

< expl-q(@ +V,, A)T, } exp\_— m(V -V, J /2T,

 The particle distribution functions can thus be substituted into
the Maxwell equation:

V-E=47% q,(.dV,
VxB=4n/cy q, [ £y.dv,

and a self-consistent current sheet solution can be obtained.




lon distributions within the Harris sheet
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A non-Harris model: The SGS model

* Another invariant of motion, say, the sheet invariant |/ = 1/2.717' mV _dz

1s used to construct the distribution function (Sitnov et al., 2003, 2006).
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lon distributions within the SGS sheet
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Stability?

e |s a bifurcated current sheet more unstable?

* Unlikely.

e But | still stick to this because of the nice work
by Zhou09.




Recent results from THEMIS

[Zhou09]
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Model Validation with observations
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Normalized B, N, and J
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They are indeed precious dataset.
It is indeed a nice work, however

* “Cold” component is locally gyrating at the site
of the observations

* |ts spatial distribution within the current sheet
was modeled rather than measured: It is not
clear whether there is this much “cold”
component at the current sheet center

# The effort of trying to get best info out of the distribution
function data should be highly acknowledged.



Non-Harris current sheet:

With enhanced ion-electron velocity difference
at the center

 Enhanced velocity difference can lead to modified
two-stream instability [Yoon04]



Meandering ions
and the stability of a current sheet:

 Meandering ions = current density bifurcation -2
more stable current sheet? ... Then, why did THEMIS
see the current sheet to undergo reconnection soon

after seeing the meandering ions?

# Meandering ions and bifurcated current sheet are NOT
necessarily one-to-one correspondence. Producing more
meandering ions may lead to enhanced current density at
the center carried by electrons. [Fujimoto, in progress]



Wave data in the context of
reconnection research: How useful?

 Waves at electron scales: probes for electron
dynamics that particle data cannot resolve yet
as of today

* Waves at ion-electron hybrid scales: enables
ion-electron coupling, agent for dissipation

* Waves at ion-scales and at lower frequency:
not negligible in the energy budget argument,
enables remote effects to emerge
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One case: zero guide-field
[Eastwood09]
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Another case in the tail:
with guide-field (0.3)

[Chaston(09]
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Analogy to
dissipation-fluctuation theorem
* |n 3-D with guide-field,

- RX rate at a certain level gives rise to KAW
fluctuation

- The KAW fluctuation provides the dissipation
needed to keep the RX rate



Dissipation agent

Traditionally
 Buneman instability

* Lower hybrid wave
Also

* Whistler wave, Modified two-stream instability

In addition,
 Kinetic Alfven wave

#More work in progress [Eastwood]



At the leading-edge of a jet

* Ballooning instability triggers multi-scale turbulence

* One of the Focal points of recent interest (Cluster,
THEMIS)
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Wave data in the context of
reconnection research: How useful?

Waves at electron scales: probes for electron
dynamics that particle data cannot resolve yet

as of today

Waves at ion-electron hybrid scales: enables
ion-electron coupling, agent for dissipation

Waves at ion-scales and at lower frequency:
not negligible in the energy budget argument,
enables remote effects to emerge

Islands



Magnetic islands

Plasmoid instability
Secondary islands
Coalescence

Particle acceleration



Magnetic islands

Plasmoid instability
Secondary islands
Coalescence

Particle acceleration



Features at the center of an island formed by coalescence,
and that right after the coalescence
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Cluster obs of an island: 2

- Size ~ 20 ion inertial length
- Density dip & guide-field peak

at the center

o Cluster 2

** Comparison with 2D PIC simulations

t=20 to t=30)

after coalescence
2.0

Best agreement when N dip and By max in the center of
flux rope corresponding to final coalescence stage (from

¢ Cluster might have crossed flux rope right
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Slow ESW (Buneman type) at an O-line

* Another item to suggest that this site for the
O-line would have been that for an X-line
facilitated the coalescence which formed the
island! [Yuri Khotyaintsev, in preparation]

 Smoking gun evidence for coalescence (?)



Reconnection and waves:
The framework

e So far, typically, dynamics in a 2-D picture plus
3-D freedom for the waves

e Are we ready for full 3-D consideration?



