水星ナトリウム大気光分光観測器

亀田
水星ナトリウム大気生成過程

太陽光、太陽風、隕石衝突などで
地表からナトリウムが放出される。
高緯度で高密度→ 太陽風スパッタリング
Scientific Objectives

- MSASI is “Mercury Sodium Atmosphere Spectral Imager.”
- Spectral resolution of ~85,000 enables us to observe distribution of Na exosphere on the dayside.

NaD2, D1 輝線幅は5pm

Potter et al., 2008

McClintock et al., 2008

Potter et al., 2008
Scientific Objectives

• MSASI is “Mercury Sodium Atmosphere Spectral Imager.”
• Spectral resolution of ~85,000 enables us to observe distribution of Na exosphere on the dayside.
• Is Solar Wind Sputtering the dominant source process?

Mercury Sodium D2 Maps
October 3, 4, 5, 2003
Dusk Terminator

Potter et al., 2008
Scientific Objectives (new)

The orbit plane of Mercury is tilted against the symmetry plane of Interplanetary dust.

- Is Solar Wind Sputtering the dominant source process? → Various sources
Dawn-Dusk Asymmetry #1

Table 4. SODIUM DIURNAL VARIATION AT MERCURY
Mean low-latitude abundances, 10^{16} atoms cm$^{-2}$

<table>
<thead>
<tr>
<th>Early Morning</th>
<th>Mid Morning</th>
<th>Mid Day</th>
<th>Mid Afternoon</th>
<th>Late Afternoon</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.0</td>
<td>19</td>
<td>15</td>
<td>8.7</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Hunten and Sprague, 1997

Ground-based observation
- It is impossible to observe Dawn and dusk side at the same time.
- From statistics, Sodium density on dawn side is ~3 times higher than that on dusk side
- Dawn-Dusk Asymmetry was observed at transit.

Sodium adsorbs night side (Low temp) is released from dayside.

(or Ion sputtering rate is higher at dawn side)

Schleicher et al., 2004
Possibly, sodium in the surface is released and depleted in the morning.

Near perihelion, Rotation against Sun is reversed (at the TAA of 25 degrees)

East-West asymmetry may be also reversed??
On MMO orbit, we can observe dawn and dusk side simultaneously near Perihelion.

Sodium Exosphere can be observed by ground-based (or Earth orbit) telescope. However, dayside dawn-dusk side can be observed only by MSASI. 20 minutes are needed for observation (inc. preparation time). Minimum requirement.
After Na atom is released from the surface of Mercury, it flies under the gravity force and solar radiation pressure. If its release velocity is low, it impacts to the surface and if it is high enough, it gets photoionized by solar UV and picked up by solar wind to the interplanetary space.
Solar radiation pressure depends on True Anomaly Angle.
Gray line shows the result of calculation by Smyth and Marconi, 1995.
Black shows the result of ours.
Na tail will be long at TAA of ~40.

\[A_{\text{ave}} = \frac{\int_{-\infty}^{\infty} A_{\nu} \exp\left(-\frac{t}{\tau}\right) \, dt \, dv}{\int_{0}^{\infty} \exp\left(-\frac{t}{\tau}\right) \, dt} = A_{\nu} \mid \nu_{t=0} = 0 \]
Summary

- Observation of Dayside
 What is source process?
- Temporal variability
 1 min - 1 day – 88 days
- Sodium tail
 → Solar radiation pressure
- Dawn-Dusk asymmetry
 → Priority near perihelion
Cross-sectional Diagram

Subsystem 2
MSASI-G

Scanning Mirror

Subsystem 1
MSASI-H

Interference Filter

Subsystem 3
MSASI-M

Front unit
ROS
Etalon

Subsystem 4
MSASI-E

Focusing unit
Detector

215 mm (L)

330 mm (L)

70 mm (L)

60 mm (V)

10 mm

30 mm

メイン(ソーラーワード)と3つのパーツに大きく分かれる
エレキと3つのパーツに大きく分かれる
エタロンを用いた分光器
MSASI-M (Main body of the instrument)

高圧電源 (3台) イメージインテンシファイアに印加

エタロン

検出器 (MSASI-D)

レンズ 平行光速を作る。結像

Light entrance

回転鏡 (MSASI-G)：1次元の可動ミラーで視野を広げる
試作機

視野掃引のための可動鏡 ロシア

ファブリペローガ干渉計含む光学系 イギリス

検出器、システムとの ポルトガル

光学系の支持構造、熱設計 ポルトガル
水星大気光観測(MSASI)

水星ナトリウム大気光カメラで大気分布の時間変化を高い空間分解能(1/20 ~85,000)で捉える
主に水星昼側で発光 波長分解して輝線を観測する
その後温度ドリフトの小さいフィルタの開発が進んできた→帯域幅0.1nm程度の
フィルタと鏡面スペースに低熱膨張ガラスを使ったエタロン1個に仕様変更
Fabry-Perot interferometer Fringe

Light source: He-Ne laser (Red)

Detector size
検出器上での波長分布

\[\lambda_n = \lambda_0 \left(1 - \left(\frac{N_e}{N^*}\right)^2 \sin^2 \theta \right)^{\frac{1}{2}} \]

ここで、
- \(\lambda_0 \) は入射角度の波長
- \(\lambda_n \) は波長
- \(N_e \) は外層の折射率
- \(N^* \) はフィルタの有効折射率
- \(\theta \) は入射角度

透過波長は
エタロンはcosに比例
フィルタは上式

\[\cos \theta = 0.65 \]
フィルタを1.97 - 0.2 傾ける
検出器の温度試験

イメージインテンシファイヤの像をCMOS上に転送

温度変化に伴う焦点距離の変化でフォーカスがずれるか？来週から試験予定
高精度平面研磨技術
高精度平面研磨技術
まとめ

・水星ナトリウム大気光観測器MSASIの紹介
・観測目的
 昼側の大気密度
 太陽風フラックスと密度
 ダスト分布 朝夕の非対称
・観測器の構成
・高精度平面研磨技術へ